Author:
Ni Choine Mairéad,Kashani Mehdi,Lowes Laura N,O'Connor Alan,Crewe Adam J,Alexander Nicholas A,Padgett Jamie E
Abstract
Purpose
In this paper the impact of corrosion of reinforcing steel in RC columns on the seismic performance of a multi-span concrete integral bridge is explored. A new constitutive model for corroded reinforcing steel is used. This model simulates the buckling of longitudinal reinforcement under cyclic loading and the impact of corrosion on buckling strength. Cover concrete strength is adjusted to account for corrosion induced damage and core concrete strength and ductility is adjusted to account for corrosion induced damage to transverse reinforcement. This study evaluates the impact which chloride induced corrosion of the reinforced concrete columns on the seismic fragility of the bridge. Fragility curves are developed at a various time intervals over the lifetime. The results of this study show that the bridge fragility increases significantly with corrosion.
Design/methodology/approach
This paper firstly evaluates the impact which chloride induced corrosion of the columns has on bridge fragility. Finally, fragility curves are developed at various time intervals over the lifetime of the bridge. The results of this study show that the bridge fragility increases significantly with corrosion.
Findings
1) It was found that columns dominate the system fragility at all levels of deterioration. Therefore, it highlights the importance of good column design in terms of both seismic detailing and durability for this integral bridge type.
2) In terms of foundation settlement coupled with corrosion, it was found that settlements on the order of the discrete levels adopted for this study increased the system fragility at the slight, moderate and extensive damage states but their impact at the complete damage states is negligible.
3) Ageing considerations are currently neglected in widespread regional risk assessment and loss estimation packages for transport infrastructure. The result of this study provides a methodology that enables bridge managers and owners to employ in seismic risk assessment of existing aging bridges.
Originality/value
The modelling technician developed in this paper considers the impact of detailed corrosion damaged of RC column on nonlinear dynamic response and fragility of a corroded integral bridge under earthquake loading. The current modelling technique is the most comprehensive 3D fibre element model for seismic analysis and risk assessment of corroded bridges.
Subject
Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献