Influence of processing on surface morphology and specific surface area for the nickel foam made by electrodeposition

Author:

Chen B.,Liu Peisheng,Chen J.H.

Abstract

Purpose With the nickel foam made by the technique of electrodeposition on polymer foam, the purpose of this paper is to investigate the influence of several deferent processes on the surface morphology and the specific surface area of this porous product. Design/methodology/approach The surface morphologies of the nickel foam were examined by SEM. The specific surface area of the porous product was measured by gas (N2) permeability method and also calculated by the reported formula. Findings The nickel foam from sintering in NH3 decomposition atmosphere at 850°C will achieve the same specific surface area as that at 980°C, whether this porous structure after electrodeposition comes through direct sintering in NH3 decomposition atmosphere, or through burning in air at 600°C for 4 min beforehand then the same reductive sintering. Originality/value There have been some studies on the preparation and application of nickel foam, but few works focus on the processing influence on the specific surface of this porous product. The present work provides the investigations on the difference of the product made under different producing conditions, and the influence of several deferent processes on the specific surface area of the product.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference27 articles.

1. Gas diffusion electrode using porous nickel;Electrochemistry and Industrial Physical-Chemistry,1998

2. Heat propagation in computer designed and real metal foam structures;Multidiscipline Modeling in Materials and Structures,2016

3. Manufacture, characterisation and application of cellular metals and metal foams;Progress in Materials Science,2001

4. Metal foam regenerators; heat transfer and storage in porous metals;Journal of Materials Research,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3