Hybrid feature descriptor and probabilistic neuro-fuzzy system for face recognition

Author:

Bindu Hima,K. Manjunathachari

Abstract

Purpose This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial recognition (FR) systems play a vital part in several applications such as surveillance, access control and image understanding. Accordingly, various face recognition methods have been developed in the literature, but the applicability of these algorithms is restricted because of unsatisfied accuracy. So, the improvement of face recognition is significantly important for the current trend. Design/methodology/approach This paper proposes a face recognition system through feature extraction and classification. The proposed model extracts the local and the global feature of the image. The local features of the image are extracted using the kernel based scale invariant feature transform (K-SIFT) model and the global features are extracted using the proposed m-Co-HOG model. (Co-HOG: co-occurrence histograms of oriented gradients) The proposed m-Co-HOG model has the properties of the Co-HOG algorithm. The feature vector database contains combined local and the global feature vectors derived using the K-SIFT model and the proposed m-Co-HOG algorithm. This paper proposes a probabilistic neuro-fuzzy classifier system for the finding the identity of the person from the extracted feature vector database. Findings The face images required for the simulation of the proposed work are taken from the CVL database. The simulation considers a total of 114 persons form the CVL database. From the results, it is evident that the proposed model has outperformed the existing models with an improved accuracy of 0.98. The false acceptance rate (FAR) and false rejection rate (FRR) values of the proposed model have a low value of 0.01. Originality/value This paper proposes a face recognition system with proposed m-Co-HOG vector and the hybrid neuro-fuzzy classifier. Feature extraction was based on the proposed m-Co-HOG vector for extracting the global features and the existing K-SIFT model for extracting the local features from the face images. The proposed m-Co-HOG vector utilizes the existing Co-HOG model for feature extraction, along with a new color gradient decomposition method. The major advantage of the proposed m-Co-HOG vector is that it utilizes the color features of the image along with other features during the histogram operation.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference31 articles.

1. Artificial neural networks,2005

2. Kernel-based scale-invariant feature transform and spherical SVM classifier for face recognition;Journal of Engineering Research,2017

3. An efficient hardware implementation of HOG feature extraction for human detection;IEEE Transactions on Intelligent Transportation Systems,2014

4. Superimposed sparse parameter classifiers for face recognition;IEEE Transactions on Cybernetics,2017

5. Robust face recognition with structural binary gradient patterns pattern recognition;Pattern Recognition,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probability numbers for multi-attribute decision-making;Journal of Intelligent & Fuzzy Systems;2024-03-05

2. Moth-flame optimization based deep feature selection for facial expression recognition using thermal images;Multimedia Tools and Applications;2023-06-28

3. Hybrid features and exponential moth-flame optimization based deep belief network for face recognition;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2020-10-04

4. Examination on avionics system fault prediction technology based on ashy neural network and fuzzy recognition;Journal of Intelligent & Fuzzy Systems;2020-04-30

5. Examination on face recognition method based on type 2 blurry;Journal of Intelligent & Fuzzy Systems;2020-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3