A novel WiFi indoor positioning strategy based on weighted squared Euclidean distance and local principal gradient direction

Author:

Zhang Wei,Hua Xianghong,Yu Kegen,Qiu Weining,Zhang Shoujian,He Xiaoxing

Abstract

Purpose This paper aims to introduce the weighted squared Euclidean distance between points in signal space, to improve the performance of the Wi-Fi indoor positioning. Nowadays, the received signal strength-based Wi-Fi indoor positioning, a low-cost indoor positioning approach, has attracted a significant attention from both academia and industry. Design/methodology/approach The local principal gradient direction is introduced and used to define the weighting function and an average algorithm based on k-means algorithm is used to estimate the local principal gradient direction of each access point. Then, correlation distance is used in the new method to find the k nearest calibration points. The weighted squared Euclidean distance between the nearest calibration point and target point is calculated and used to estimate the position of target point. Findings Experiments are conducted and the results indicate that the proposed Wi-Fi indoor positioning approach considerably outperforms the weighted k nearest neighbor method. The new method also outperforms support vector regression and extreme learning machine algorithms in the absence of sufficient fingerprints. Research limitations/implications Weighted k nearest neighbor approach, support vector regression algorithm and extreme learning machine algorithm are the three classic strategies for location determination using Wi-Fi fingerprinting. However, weighted k nearest neighbor suffers from dramatic performance degradation in the presence of multipath signal attenuation and environmental changes. More fingerprints are required for support vector regression algorithm to ensure the desirable performance; and labeling Wi-Fi fingerprints is labor-intensive. The performance of extreme learning machine algorithm may not be stable. Practical implications The new weighted squared Euclidean distance-based Wi-Fi indoor positioning strategy can improve the performance of Wi-Fi indoor positioning system. Social implications The received signal strength-based effective Wi-Fi indoor positioning system can substitute for global positioning system that does not work indoors. This effective and low-cost positioning approach would be promising for many indoor-based location services. Originality/value A novel Wi-Fi indoor positioning strategy based on the weighted squared Euclidean distance is proposed in this paper to improve the performance of the Wi-Fi indoor positioning, and the local principal gradient direction is introduced and used to define the weighting function.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference26 articles.

1. Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient;Journal of the American Society for Information Science and Technology,2003

2. Clustering and the continuous k-means algorithm;Los Alamos Science,1994

3. Case study of BIM and cloud–enabled real-time RFID indoor localization for construction management applications;Journal of Construction Engineering and Management,2016

4. Recent advances in wireless indoor localization techniques and system;Journal of Computer Networks and Communications,2013

5. Received-signal-strength-based indoor positioning using compressive sensing;IEEE Transactions on Mobile Computing,2012

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3