Development of a novel V-frame octocopter: design, kinematic analysis and simulation using PID controllers with Ziegler Nichols tuning method

Author:

Minh Tri BienORCID,Vo Hien,Hua Luan ThanhORCID

Abstract

PurposeThe main purpose of the study was mechanical designing, simulation and manufacturing process for a new model of octocopter V-frame and to achieve simple manufacturing with 3D printing technology. Moreover, the octocopter PID controller was simulated on the Simulink environment to get performance on the roll and pitch angle control.Design/methodology/approachOctocopter is one kind of multirotor vehicle (a rotorcraft with more than two rotors), that has lately gained a lot of attention for both the scientific and commercial spheres. With a greater number of rotors, the multirotor is very maneuverable and robust. Multi-copter makes an important contribution to the technological revolution in the military, industry, transportation, mapping and especially agriculture. Nowadays, we are heading to the four-industrial revolutions as well as the new technological application in the agricultural field such as precision agriculture, mapping and surveillance. Due to recently advanced technology about sensors, electronics, 3D printing, battery with high performance, multi-copter can be manufactured at low cost.FindingsThe V-frame octocopter was chosen to design in this paper; it had better performance scores including high redundancy rotors, high payload capability and affordable cost than another multi-copter family. The V-frame octocopter increasing freedom field of view of the camera was considered to place the camera position in the front of the drone.Research limitations/implicationsFor the future aspects, the mechanical structure of the octocopter could be improved by using more advanced metal 3D printing to produce the aluminum or titan alloy materials for lighter and more rigid compared with ABS material, and finally the assembly to the real test.Originality/valueThe study shows the new platform of the V-frame octocopter kinematics analysis, designed on the CAD software, with some important mechanical parts using FEM analysis to find the highest stress and displacement under high load applied, the result of all connecting the joints 3D printing part is completely safe. Mechanical parts were manufactured by using 3D printing technology and CNC milling. Moreover, the study has shown V-frame octocopter simulation based on Simulink using the second method Ziegler- Nichols to find suitable parameters of the PID controller for roll and pitch angle. Using the block simulation is good for implementing and fast checking the new algorithm when building the new platform of the robot.

Publisher

Emerald

Subject

Computer Science Applications,History,Education

Reference17 articles.

1. What's a picture really worth? On the use of drone aerial imagery to estimate intertidal rocky shore mussel demographic parameters;Estuarine, Coastal and Shelf Science,2018

2. Design of multirotor aerial vehicles: a taxonomy based on input allocation;The International Journal of Robotics Research,2021

3. Design and assessment of octocopter drones with improved aerodynamic efficiency and performance;Aerospace Science and Technology,2020

4. Structure from motion photogrammetry in forestry: a review;Current Forestry Reports,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic optimal tuning for flight control system of morphing arm octorotor;Aircraft Engineering and Aerospace Technology;2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3