Deep learning for detecting distresses in buildings and pavements: a critical gap analysis

Author:

Elghaish Faris,Matarneh Sandra T.,Talebi Saeed,Abu-Samra Soliman,Salimi Ghazal,Rausch Christopher

Abstract

Purpose The massive number of pavements and buildings coupled with the limited inspection resources, both monetary and human, to detect distresses and recommend maintenance actions lead to rapid deterioration, decreased service life, lower level of service and increased community disruption. Therefore, this paper aims at providing a state-of-the-art review of the literature with respect to deep learning techniques for detecting distress in both pavements and buildings; research advancements per asset/structure type; and future recommendations in deep learning applications for distress detection. Design/methodology/approach A critical analysis was conducted on 181 papers of deep learning-based cracks detection. A structured analysis was adopted so that major articles were analyzed according to their focus of study, used methods, findings and limitations. Findings The utilization of deep learning to detect pavement cracks is advanced compared to assess and evaluate the structural health of buildings. There is a need for studies that compare different convolutional neural network models to foster the development of an integrated solution that considers the data collection method. Further research is required to examine the setup, implementation and running costs, frequency of capturing data and deep learning tool. In conclusion, the future of applying deep learning algorithms in lieu of manual inspection for detecting distresses has shown promising results. Practical implications The availability of previous research and the required improvements in the proposed computational tools and models (e.g. artificial intelligence, deep learning, etc.) are triggering researchers and practitioners to enhance the distresses’ inspection process and make better use of their limited resources. Originality/value A critical and structured analysis of deep learning-based crack detection for pavement and buildings is conducted for the first time to enable novice researchers to highlight the knowledge gap in each article, as well as building a knowledge base from the findings of other research to support developing future workable solutions.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3