Effect of fluid-porous interface conditions on steady flow around and through a porous circular cylinder

Author:

Bovand Masoud,Rashidi Saman,Dehesht Masoomeh,Abolfazli Esfahani Javad

Abstract

Purpose – The purpose of this paper is to implement the numerical analysis based on finite volume method to compare the effects of stress-jump (SJ) and stress-continuity (SC) conditions on flow structure around and through a porous circular cylinder. Design/methodology/approach – In this study, a steady flow of a viscous, incompressible fluid around and through a porous circular cylinder of diameter “D,” using Darcy-Brinkman-Forchheimer’s equation in the porous region, is discussed. The SJ condition proposed by Ochoa-Tapia and Whitaker is applied at the porous-fluid interface and compared with the traditional interfacial condition based on the SC condition in fluid and porous media. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Reynolds and Darcy numbers are varied within the ranges of 1 < Re < 40 and 10-7 < Da < 10-2, respectively, and the porosities are e=0.45, 0.7 and 0.95. Findings – Results show that the SJ condition leads to a much smaller boundary layer within porous medium near the interface as compared to the SC condition. Two interfacial conditions yield similar results with decrease in porosity. Originality/value – There is no published research in the literature about the effects of important parameters, such as Porosity and Darcy numbers on different fluid-porous interface conditions for a porous cylinder and comparison the effects of SJ and SC conditions on flow structure around and through a porous circular cylinder.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3