Author:
Moderres Mourad,Abboudi Said,Ihdene Malika,Aberkane Sofiane,Ghezal Abderahmane
Abstract
Purpose
Double-diffusive convection within a tri-dimensional in a horizontal annulus partially filled with a fluid-saturated porous medium is numerically investigated. The aim of this work is to understand the effects of a source of heat and solute on the fluid flow and heat and mass transfer rates.
Design/methodology/approach
In the formulation of the problem, the Darcy–Brinkman–Forchheimer model is adopted to the fluid flow in the porous annulus. The laminar flow regime is considered under steady state conditions. Moreover, the transport equation for continuity, momentum, energy and mass transfer are solved using the Patankar–Spalding technique.
Findings
Through this investigation, the predicted results for both average Nusselt and Sherwood numbers were correlated in terms of Lewis number, thermal Grashof number and buoyancy ration. A comparison was made with the published results and a good agreement was found.
Originality/value
The paper’s results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical forms and discussed. This paper aims to study the behavior of the flow structure and heat transfer and mass for different parameters.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献