Generalized Richardson extrapolation procedures for estimating grid-independent numerical solutions

Author:

Baliga Bantwal R. (Rabi),Lokhmanets Iurii Yuri

Abstract

Purpose – The purpose of this paper is to present outcomes of efforts made over the last 20 years to extend the applicability of the Richardson extrapolation procedure to numerical predictions of multidimensional, steady and unsteady, fluid flow and heat transfer phenomena in regular and irregular calculation domains. Design/methodology/approach – Pattern-preserving grid-refinement strategies are proposed for mathematically rigorous generalizations of the Richardson extrapolation procedure for numerical predictions of steady fluid flow and heat transfer, using finite volume methods and structured multidimensional Cartesian grids; and control-volume finite element methods and unstructured two-dimensional planar grids, consisting of three-node triangular elements. Mathematically sound extrapolation procedures are also proposed for numerical solutions of unsteady and boundary-layer-type problems. The applicability of such procedures to numerical solutions of problems with curved boundaries and internal interfaces, and also those based on unstructured grids of general quadrilateral, tetrahedral, or hexahedral elements, is discussed. Findings – Applications to three demonstration problems, with discretizations in the asymptotic regime, showed the following: the apparent orders of accuracy were the same as those of the numerical methods used; and the extrapolated results, measures of error, and a grid convergence index, could be obtained in a smooth and non-oscillatory manner. Originality/value – Strict or approximate pattern-preserving grid-refinement strategies are used to propose generalized Richardson extrapolation procedures for estimating grid-independent numerical solutions. Such extrapolation procedures play an indispensable role in the verification and validation techniques that are employed to assess the accuracy of numerical predictions which are used for designing, optimizing, virtual prototyping, and certification of thermofluid systems.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3