Predictive Six Sigma for Turkish manufacturers: utilization of machine learning tools in DMAIC

Author:

Uluskan Meryem,Karşı Merve Gizem

Abstract

Purpose This study aims to emphasize utilization of Predictive Six Sigma to achieve process improvements based on machine learning (ML) techniques embedded in define, measure, analyze, improve, control (DMAIC). With this aim, this study presents selection and utilization of ML techniques, including multiple linear regression (MLR), artificial neural network (ANN), random forests (RF), gradient boosting machines (GBM) and k-nearest neighbors (k-NN) in the analyze and improve phases of Six Sigma DMAIC. Design/methodology/approach A data set containing 320 observations with nine input and one output variables is used. To achieve the objective which was to decrease the number of fabric defects, five ML techniques were compared in terms of prediction performance and best tools were selected. Next, most important causes of defects were determined via these tools. Finally, parameter optimization was conducted for minimum number of defects. Findings Among five ML tools, ANN, GBM and RF are found to be the best predictors. Out of nine potential causes, “machine speed” and “fabric width” are determined as the most important variables by using these tools. Then, optimum values for “machine speed” and “fabric width” for fabric defect minimization are determined both via regression response optimizer and ANN surface optimization. Ultimately, average defect number was decreased from 13/roll to 3/roll, which is a considerable decrease attained through utilization of ML techniques in Six Sigma. Originality/value Addressing an important gap in Six Sigma literature, in this study, certain ML techniques (i.e. MLR, ANN, RF, GBM and k-NN) are compared and the ones possessing best performances are used in the analyze and improve phases of Six Sigma DMAIC.

Publisher

Emerald

Subject

General Medicine

Reference83 articles.

1. Akin, O. (2010), “Implementation of the activity-based costing system integrated with the six sigma system in the marble industry”, PhD dissertation, Suleyman Demirel University, Institute of Social Sciences, Isparta, Turkey.

2. A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models;Scientific Reports,2022

3. Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets;SN Applied Sciences,2019

4. The revolution lean six sigma 4.0;International Journal on Advanced Science, Engineering and Information Technology,2018

5. Six-sigma quality management in laboratory medicine;Turkish Journal of Biochemistry,2005

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3