Behavioral data assists decisions: exploring the mental representation of digital-self

Author:

Zhang Yixin,Cui Lizhen,He Wei,Lu Xudong,Wang Shipeng

Abstract

Purpose The behavioral decision-making of digital-self is one of the important research contents of the network of crowd intelligence. The factors and mechanisms that affect decision-making have attracted the attention of many researchers. Among the factors that influence decision-making, the mind of digital-self plays an important role. Exploring the influence mechanism of digital-selfs’ mind on decision-making is helpful to understand the behaviors of the crowd intelligence network and improve the transaction efficiency in the network of CrowdIntell. Design/methodology/approach In this paper, the authors use behavioral pattern perception layer, multi-aspect perception layer and memory network enhancement layer to adaptively explore the mind of a digital-self and generate the mental representation of a digital-self from three aspects including external behavior, multi-aspect factors of the mind and memory units. The authors use the mental representations to assist behavioral decision-making. Findings The evaluation in real-world open data sets shows that the proposed method can model the mind and verify the influence of the mind on the behavioral decisions, and its performance is better than the universal baseline methods for modeling user interest. Originality/value In general, the authors use the behaviors of the digital-self to mine and explore its mind, which is used to assist the digital-self to make decisions and promote the transaction in the network of CrowdIntell. This work is one of the early attempts, which uses neural networks to model the mental representation of digital-self.

Publisher

Emerald

Reference36 articles.

1. Linas Baltrunas and Domonkos Tikk. Session-based recommendations with recurrent neural networks,2015

2. Controllable multi-interest framework for recommendation,2020

3. Crowd science and engineering: concept and research framework;International Journal of Crowd Science,2017

4. Hierarchical gating networks for sequential recommendation,2019

5. Behavior sequence transformer for e-commerce recommendation in Alibaba,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diminishing the Perception Bias in the Working Environment Using a Network Generation-Based Framework;Tsinghua Science and Technology;2024-06

2. A Systematic Review and Replicability Study of BERT4Rec for Sequential Recommendation;Sixteenth ACM Conference on Recommender Systems;2022-09-18

3. Multi-modal Information Fusion-powered Regional Covid-19 Epidemic Forecasting;2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2021-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3