Monitoring corporate credit risk with multiple data sources

Author:

Ni DuORCID,Lim Ming K.ORCID,Li Xingzhi,Qu Yingchi,Yang MeiORCID

Abstract

PurposeMonitoring corporate credit risk (CCR) has traditionally relied on such indicators as income, debt and inventory at a company level. These data are usually released on a quarterly or annual basis by the target company and include, exclusively, the financial data of the target company. As a result of this exclusiveness, the models for monitoring credit risk usually fail to account for some significant information from different sources or channels, like the data of its supply chain partner companies and other closely relevant data yet available from public networks, and it is these seldom used data that can help unveil the immediate CCR changes and how the risk is being propagated along the supply chain. This study aims to discuss the a forementioned issues.Design/methodology/approachGoing beyond the existing CCR prediction data, this study intends to address the impact of supply chain data and network activity data on CCR prediction, by integrating machine learning technology into the prediction to verify whether adding new data can improve the predictability.FindingsThe results show that the predictive errors of the datasets after adding supply chain data and network activity data to them are made the ever least. Moreover, intelligent algorithms like support vector machine (SVM), compared to traditionally used methods, are better at processing nonlinear datasets and mining complex relationships between multi-variable indicators for CCR evaluation.Originality/valueThis study indicates that bringing in more information of multiple data sources combined with intelligent algorithms can help companies prevent risk spillovers in the supply chain from causing harm to the company, and, as well, help customers evaluate the creditworthiness of the entity to lessen the risk of their investment.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference77 articles.

1. Credit shock propagation along supply chains: evidence from the CDS market;Management Science,2021

2. Ordinary least squares regression method approach for site selection of automated teller machines (ATMs),2015

3. Managerial ability and credit risk assessment;Management Science,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3