An e-healthcare system for disease prediction using hybrid data mining technique

Author:

Sarkar Bikash Kanti,Sana Shib Sankar

Abstract

Purpose The purpose of this study is to alleviate the specified issues to a great extent. To promote patients’ health via early prediction of diseases, knowledge extraction using data mining approaches shows an integral part of e-health system. However, medical databases are highly imbalanced, voluminous, conflicting and complex in nature, and these can lead to erroneous diagnosis of diseases (i.e. detecting class-values of diseases). In literature, numerous standard disease decision support system (DDSS) have been proposed, but most of them are disease specific. Also, they usually suffer from several drawbacks like lack of understandability, incapability of operating rare cases, inefficiency in making quick and correct decision, etc. Design/methodology/approach Addressing the limitations of the existing systems, the present research introduces a two-step framework for designing a DDSS, in which the first step (data-level optimization) deals in identifying an optimal data-partition (Popt) for each disease data set and then the best training set for Popt in parallel manner. On the other hand, the second step explores a generic predictive model (integrating C4.5 and PRISM learners) over the discovered information for effective diagnosis of disease. The designed model is a generic one (i.e. not disease specific). Findings The empirical results (in terms of top three measures, namely, accuracy, true positive rate and false positive rate) obtained over 14 benchmark medical data sets (collected from https://archive.ics.uci.edu/ml) demonstrate that the hybrid model outperforms the base learners in almost all cases for initial diagnosis of the diseases. After all, the proposed DDSS may work as an e-doctor to detect diseases. Originality/value The model designed in this study is original, and the necessary parallelized methods are implemented in C on Cluster HPC machine (FUJITSU) with total 256 cores (under one Master node).

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Reference84 articles.

1. Associative classification approaches: review and comparison;Journal of Information and Knowledge Management (JIKM) World Scientific,2014

2. Using healthcare system archetypes to help hospitals become learning organisations;Journal of Modelling in Management,2008

3. Feature generation using genetic programming with comparative partner selection for diabetes classification;Expert Systems with Applications,2013

4. Decision tree classifiers for automated medical diagnoses;Neural Computing and Applications,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3