Author:
Li Ye,Ding Yuanping,Jing Yaqian,Guo Sandang
Abstract
PurposeThe purpose of this paper is to construct an interval grey number NGM(1,1) direct prediction model (abbreviated as IGNGM(1,1)), which need not transform interval grey numbers sequences into real number sequences, and the Markov model is used to optimize residual sequences of IGNGM(1,1) model.Design/methodology/approachA definition equation of IGNGM(1,1) model is proposed in this paper, and its time response function is solved by recursive iteration method. Next, the optimal weight of development coefficients of two boundaries is obtained by genetic algorithm, which is designed by minimizing the average relative error based on time weighted. In addition to that, the Markov model is used to modify residual sequences.FindingsThe interval grey numbers’ sequences can be predicted directly by IGNGM(1,1) model and its residual sequences can be amended by Markov model. A case study shows that the proposed model has higher accuracy in prediction.Practical implicationsUncertainty and volatility information is widespread in practical applications, and the information can be characterized by interval grey numbers. In this paper, an interval grey numbers direct prediction model is proposed, which provides a method for predicting the uncertainty information in the real world.Originality/valueThe main contribution of this paper is to propose an IGNGM(1,1) model which can realize interval grey numbers prediction without transforming them into real number and solve the optimal weight of integral development coefficient by genetic algorithm so as to avoid the distortion of prediction results. Moreover, the Markov model is used to modify residual sequences to further improve the modeling accuracy.
Reference26 articles.
1. The control problems of grey systems;Systems and Control Letters,1982
2. Modeling and optimizing the grey model NGOM(1,1) for the approximation non-homogenous decreasing series;Control and Decision,2017
3. Grey prediction model of continuous interval grey number based on perturbation information;Systems Engineering and Electronics,2019
4. Prediction of agricultural water consumption based on fractional grey model;Transactions of the Chinese Society of Agricultural Engineering,2020
5. A novel structure-adaptive intelligent grey forecasting model with full-order time power terms and its application;Computers and Industrial Engineering,2018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献