Improving displacement of silicon V-shaped electrothermal microactuator using platinum sputter deposition process

Author:

Nguyen Dzung Tien,Pham Phuc Hong,Hoang Kien Trung

Abstract

Purpose This paper aims to propose a method to reduce the resistance of silicon-based V-shaped electrothermal microactuator (VEM) by applying a surface sputtering process. Design/methodology/approach Four VEM’s samples have been fabricated using traditional silicon on insulator (SOI)-Micro-electro-mechanical System (MEMS) technology, three of them are coated with a thin layer of platinum on the top surface by sputtering technique with different sputtered times and the other is original. The displacements of the VEM are calculated and simulated to evaluate the advantages of sputtering method. Findings The measured results show that the average resistance of the sputtered structures is approximately 1.16, 1.55 and 2.4 times lower than the non-sputtering sample corresponding to the sputtering time of 1.5, 3 and 6 min. Simulation results confirmed that the maximum displacement of the sputtered VEM is almost 1.45 times larger than non-sputtering one in the range of voltage from 8 to 20 V. The experimental displacements are also measured to validate the better performance of the sputtered samples. Originality/value The experimental results demonstrated the better displacement of the VEM structure after using the platinum sputtering process. The improvement can be considered and applied for enhancing displacement as well as decreasing the driving voltage of the other electrothermal microactuators like U- or Z-shaped structures while combining with the low-cost SOI-MEMS micromachining technology.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single mask and low voltage electrothermal micromotor;Sensors and Actuators A: Physical;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3