Work principle in inelastic buckling analysis of axially compressed rectangular plates

Author:

Eziefula U.G.,Onwuka D.O.,Ibearugbulem O.M.

Abstract

Purpose The purpose of this paper is to analyze the inelastic buckling of a rectangular thin flat isotropic plate subjected to uniform uniaxial in-plane compression using a work principle, a deformation plasticity theory and Taylor–Maclaurin series formulation. Design/methodology/approach The non-loaded longitudinal edges of the rectangular plate are clamped, whereas the loaded edges are simply supported (CSCS). Total work error function is applied to Stowell’s plasticity theory in the derivation of the inelastic buckling equation. Mathematical formulation of the Taylor–Maclaurin series deflection function satisfied the boundary conditions of the CSCS rectangular plate. The critical inelastic load of the plate is then derived by applying variational principles. Findings Values of the plate buckling coefficient are calculated using various values of moduli ratio for aspect ratios ranging from 0.1 to 1.0, in intervals of 0.1. The accuracy of the proposed technique is validated by comparing the results obtained in the present study with solutions from a previous investigation. The percentage differences in the values of the buckling coefficient ranged from −0.122 to −4.685 per cent. Originality/value The results indicate that the work principle approach can be used as an alternative approximate method for analyzing inelastic buckling of rectangular thin flat isotropic plates under uniform in-plane compressive loads.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference17 articles.

1. Inelastic plate buckling;Journal of Engineering Mechancis – ASCE,2010

2. Elasto-plastic analysis of plates by the element free Galerkin method;Engineering Computations,2006

3. A novel finite volume based formulation for the elasto-plastic analysis of plates;Thin-Walled Structures,2014

4. Direct integration and work principle as new approach in bending analyses of isotropic rectangular plates;The International Journal of Engineering and Science,2013

5. Using line continuum to explain work principle method for structural continuum analysis;International Journal of Innovative Research and Development,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3