Abstract
PurposeIn recent times, due to rapid urbanization and the expansion of the E-commerce industry, drone delivery has become a point of interest for many researchers and industry practitioners. Several factors are directly or indirectly responsible for adopting drone delivery, such as customer expectations, delivery urgency and flexibility to name a few. As the traditional mode of delivery has some potential drawbacks to deliver medical supplies in both rural and urban settings, unmanned aerial vehicles can be considered as an alternative to overcome the difficulties. For this reason, drones are incorporated in the healthcare supply chain to transport lifesaving essential medicine or blood within a very short time. However, since there are numerous types of drones with varying characteristics such as flight distance, payload-carrying capacity, battery power, etc., selecting an optimal drone for a particular scenario becomes a major challenge for the decision-makers. To fill this void, a decision support model has been developed to select an optimal drone for two specific scenarios related to medical supplies delivery.Design/methodology/approachThe authors proposed a methodology that incorporates graph theory and matrix approach (GTMA) to select an optimal drone for two specific scenarios related to medical supplies delivery at (1) urban areas and (2) rural/remote areas based on a set of criteria and sub-criteria critical for successful drone implementation.FindingsThe findings of this study indicate that drones equipped with payload handling capacity and package handling flexibility get more preference in urban region scenarios. In contrast, drones with longer flight distances are prioritized most often for disaster case scenarios where the road communication system is either destroyed or inaccessible.Research limitations/implicationsThe methodology formulated in this paper has implications in both academic and industrial settings. This study addresses critical gaps in the existing literature by formulating a mathematical model to find the most suitable drone for a specific scenario based on its criteria and sub-criteria rather than considering a fleet of drones is always at one's disposal.Practical implicationsThis research will serve as a guideline for the practitioners to select the optimal drone in different scenarios related to medical supplies delivery.Social implicationsThe proposed methodology incorporates GTMA to assist decision-makers in order to appropriately choose a particular drone based on its characteristics crucial for that scenario.Originality/valueThis research will serve as a guideline for the practitioners to select the optimal drone in different scenarios related to medical supplies delivery.
Subject
Transportation,Business and International Management
Reference72 articles.
1. Assessments of heavy lift UAV quadcopter drone to support COVID 19 vaccine cold chain delivery for indigenous people in remote areas in South East Asia,2021
2. Last mile delivery by drones: an estimation of viable market potential and access to citizens across European cities;European Transport Research Review,2019
3. MCDM-AHP method in decision makings;ARPN Journal of Engineering and Applied Sciences,2016
4. Battery-aware energy model of drone delivery tasks,2018
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献