A decision support model for selecting unmanned aerial vehicle for medical supplies: context of COVID-19 pandemic

Author:

Banik Debapriya,Ibne Hossain Niamat UllahORCID,Govindan Kannan,Nur Farjana,Babski-Reeves Kari

Abstract

PurposeIn recent times, due to rapid urbanization and the expansion of the E-commerce industry, drone delivery has become a point of interest for many researchers and industry practitioners. Several factors are directly or indirectly responsible for adopting drone delivery, such as customer expectations, delivery urgency and flexibility to name a few. As the traditional mode of delivery has some potential drawbacks to deliver medical supplies in both rural and urban settings, unmanned aerial vehicles can be considered as an alternative to overcome the difficulties. For this reason, drones are incorporated in the healthcare supply chain to transport lifesaving essential medicine or blood within a very short time. However, since there are numerous types of drones with varying characteristics such as flight distance, payload-carrying capacity, battery power, etc., selecting an optimal drone for a particular scenario becomes a major challenge for the decision-makers. To fill this void, a decision support model has been developed to select an optimal drone for two specific scenarios related to medical supplies delivery.Design/methodology/approachThe authors proposed a methodology that incorporates graph theory and matrix approach (GTMA) to select an optimal drone for two specific scenarios related to medical supplies delivery at (1) urban areas and (2) rural/remote areas based on a set of criteria and sub-criteria critical for successful drone implementation.FindingsThe findings of this study indicate that drones equipped with payload handling capacity and package handling flexibility get more preference in urban region scenarios. In contrast, drones with longer flight distances are prioritized most often for disaster case scenarios where the road communication system is either destroyed or inaccessible.Research limitations/implicationsThe methodology formulated in this paper has implications in both academic and industrial settings. This study addresses critical gaps in the existing literature by formulating a mathematical model to find the most suitable drone for a specific scenario based on its criteria and sub-criteria rather than considering a fleet of drones is always at one's disposal.Practical implicationsThis research will serve as a guideline for the practitioners to select the optimal drone in different scenarios related to medical supplies delivery.Social implicationsThe proposed methodology incorporates GTMA to assist decision-makers in order to appropriately choose a particular drone based on its characteristics crucial for that scenario.Originality/valueThis research will serve as a guideline for the practitioners to select the optimal drone in different scenarios related to medical supplies delivery.

Publisher

Emerald

Subject

Transportation,Business and International Management

Reference72 articles.

1. Assessments of heavy lift UAV quadcopter drone to support COVID 19 vaccine cold chain delivery for indigenous people in remote areas in South East Asia,2021

2. Last mile delivery by drones: an estimation of viable market potential and access to citizens across European cities;European Transport Research Review,2019

3. MCDM-AHP method in decision makings;ARPN Journal of Engineering and Applied Sciences,2016

4. Battery-aware energy model of drone delivery tasks,2018

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3