Abstract
Purpose
Users often struggle to select choosing among similar online services. To help them make informed decisions, it is important to establish a service reputation measurement mechanism. User-provided feedback ratings serve as a primary source of information for this mechanism, and ensuring the credibility of user feedback is crucial for a reliable reputation measurement. Most of the previous studies use passive detection to identify false feedback without creating incentives for honest reporting. Therefore, this study aims to develop a reputation measure for online services that can provide incentives for users to report honestly.
Design/methodology/approach
In this paper, the authors present a method that uses a peer prediction mechanism to evaluate user credibility, which evaluates users’ credibility with their reports by applying the strictly proper scoring rule. Considering the heterogeneity among users, the authors measure user similarity, identify similar users as peers to assess credibility and calculate service reputation using an improved expectation-maximization algorithm based on user credibility.
Findings
Theoretical analysis and experimental results verify that the proposed method motivates truthful reporting, effectively identifies malicious users and achieves high service rating accuracy.
Originality/value
The proposed method has significant practical value in evaluating the authenticity of user feedback and promoting honest reporting.
Reference39 articles.
1. A simulation software for the evaluation of vulnerabilities in reputation management systems;ACM Transactions on Computer Systems,2021
2. CBiLSTM: a hybrid deep learning model for efficient reputation assessment of cloud services;IEEE Access,2022
3. An iterative method for calculating robust rating scores;IEEE Transactions on Parallel and Distributed Systems,2014
4. The Netflix prize,2007
5. Ranking online services by aggregating ordinal preferences,2016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献