User credibility evaluation for reputation measurement of online service

Author:

Xiong Yahan,Fu Xiaodong

Abstract

Purpose Users often struggle to select choosing among similar online services. To help them make informed decisions, it is important to establish a service reputation measurement mechanism. User-provided feedback ratings serve as a primary source of information for this mechanism, and ensuring the credibility of user feedback is crucial for a reliable reputation measurement. Most of the previous studies use passive detection to identify false feedback without creating incentives for honest reporting. Therefore, this study aims to develop a reputation measure for online services that can provide incentives for users to report honestly. Design/methodology/approach In this paper, the authors present a method that uses a peer prediction mechanism to evaluate user credibility, which evaluates users’ credibility with their reports by applying the strictly proper scoring rule. Considering the heterogeneity among users, the authors measure user similarity, identify similar users as peers to assess credibility and calculate service reputation using an improved expectation-maximization algorithm based on user credibility. Findings Theoretical analysis and experimental results verify that the proposed method motivates truthful reporting, effectively identifies malicious users and achieves high service rating accuracy. Originality/value The proposed method has significant practical value in evaluating the authenticity of user feedback and promoting honest reporting.

Publisher

Emerald

Reference39 articles.

1. A simulation software for the evaluation of vulnerabilities in reputation management systems;ACM Transactions on Computer Systems,2021

2. CBiLSTM: a hybrid deep learning model for efficient reputation assessment of cloud services;IEEE Access,2022

3. An iterative method for calculating robust rating scores;IEEE Transactions on Parallel and Distributed Systems,2014

4. The Netflix prize,2007

5. Ranking online services by aggregating ordinal preferences,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3