Incorporating LDA with LSTM for followee recommendation on Twitter network

Author:

Dib Brahim,Kalloubi Fahd,Nfaoui El Habib,Boulaalam Abdelhak

Abstract

Purpose The purpose of this study is to facilitate the task of finding appropriate information to read about, and searching for people who are in the same field of interest. Knowing that more people keep up with new streaming information on Twitter micro-blogging service. With the immense number of micro-posts shared via the follower/followee network graph, Twitter users find themselves in front of millions of tweets, which makes the task crucial. Design/methodology/approach In this paper, a long short–term memory (LSTM) model that relies on the latent Dirichlet allocation (LDA) output vector for followee recommendation, the LDA model applied as a topic modeling strategy is proposed. Findings This study trains the model using a real-life data set extracted based on Twitter follower/followee architecture. It confirms the effectiveness and scalability of the proposed approach. The approach improves the state-of-the-art models average-LSTM and time-LSTM. Research limitations/implications This study improves mainly the existing followee recommendation systems. Because, unlike previous studies, it applied a non-hand-crafted method which is the LSTM neural network with LDA model for topics extraction. The main limitation of this study is the cold-start users cannot be treated, also some active fake accounts may not be detected. Practical implications The aim of this approach is to assist users seeking appropriate information to read about, by choosing appropriate profiles to follow. Social implications This approach consolidates the social relationship between users in a microblogging platform by suggesting like-minded people to each other. Thus, finding users with the same interests will be easy without spending a lot of time seeking relevant users. Originality/value Instead of classic recommendation models, the paper provides an efficient neural network searching method to make it easier to find appropriate users to follow. Therefore, affording an effective followee recommendation system.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3