Simulation of cavitation of spherically shaped hydrogen bubbles through a tube nozzle with stenosis

Author:

Ellahi Rahmat,Zeeshan Ahmad,Hussain Farooq,Safaei Mohammad Reza

Abstract

Purpose The purpose of this study is to investigate the monodisperse cavitation of bubbly mixture flow for water and hydrogen mixture flows through a nozzle having a stenosis on the wall. Design/methodology/approach Two flow regions, namely, quasi-statically stable and quasi-statically unstable increase in the bubble radius, are considered. Different oscillating periods of bubbles in downstream corresponding to various values of Reynolds number are taken into account. The Range–Kutta method is used to tackle nonlinear coupled system of governing equations. Findings It is observed that for the larger values of Reynolds number, the void fraction at the upstream section, even at small values, yields instabilities at the downstream. Consequently, owing to sudden increase in the velocity, the bubbles strike the wall with high speed that eventually remove the existing stenosis. This process can be considered as an effective cardiac surgery for arteries with semi-blockage. Originality/value Original research work and to the best of author’s knowledge, this model is reported for the first time.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3