Effects of chemical reaction and thermal radiation on unsteady double diffusive convection

Author:

Rashad A.M.,Elsayed Ahmed Sameh,Ahmed Mansour Mohamed

Abstract

Purpose – The purpose of this numerical paper is to investigate the simulation of an unsteady double diffusive natural convection in square enclosure filled with a porous medium with various boundary conditions in the presence of thermal radiation and chemical reaction effects. Design/methodology/approach – In this study, the governing dimensionless equations were written using the Brinkman Forchheimer extended Darcy model. They are numerically solved by using finite difference method by applying adiabatic boundary condition in top surface. The bottom surface is maintained at uniform temperature and concentration and left and right vertical walls are cooled. Findings – Results are presented by streamlines, isotherms, temperature and concentration contours profiles as well as the local Nusselt number and Sherwood numbers for different values of the governing parameters such as Darcy number, buoyancy ratio, Rayleigh number, thermal radiation parameter and chemical reaction parameter. It is found that that both of the local Nusselt and Sherwood numbers increase as the Rayleigh number, buoyancy ratio and Darcy number increase. Moreover, increasing the thermal radiation effects leads to a pronounced increase in the local Nusselt number, while the opposite behavior is displayed by the local Sherwood number. Furthermore, the local Sherwood number increases and the local Nusselt number decrease when the chemical reaction parameter increase. Originality/value – The originality of this study is the square cavity with various boundary conditions filled with a porous medium with thermal radiation and chemical reaction effects.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3