Author:
Zheng Kai,Yang Xianjun,Wang Yilei,Wu Yingjie,Zheng Xianghan
Abstract
Purpose
The purpose of this paper is to alleviate the problem of poor robustness and over-fitting caused by large-scale data in collaborative filtering recommendation algorithms.
Design/methodology/approach
Interpreting user behavior from the probabilistic perspective of hidden variables is helpful to improve robustness and over-fitting problems. Constructing a recommendation network by variational inference can effectively solve the complex distribution calculation in the probabilistic recommendation model. Based on the aforementioned analysis, this paper uses variational auto-encoder to construct a generating network, which can restore user-rating data to solve the problem of poor robustness and over-fitting caused by large-scale data. Meanwhile, for the existing KL-vanishing problem in the variational inference deep learning model, this paper optimizes the model by the KL annealing and Free Bits methods.
Findings
The effect of the basic model is considerably improved after using the KL annealing or Free Bits method to solve KL vanishing. The proposed models evidently perform worse than competitors on small data sets, such as MovieLens 1 M. By contrast, they have better effects on large data sets such as MovieLens 10 M and MovieLens 20 M.
Originality/value
This paper presents the usage of the variational inference model for collaborative filtering recommendation and introduces the KL annealing and Free Bits methods to improve the basic model effect. Because the variational inference training denotes the probability distribution of the hidden vector, the problem of poor robustness and overfitting is alleviated. When the amount of data is relatively large in the actual application scenario, the probability distribution of the fitted actual data can better represent the user and the item. Therefore, using variational inference for collaborative filtering recommendation is of practical value.
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference23 articles.
1. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions;IEEE Transactions on Knowledge and Data Engineering,2005
2. Generating sentences from a continuous space,2015
3. Online news recommender based on stacked au-to-encoder,2017
4. Variational lossy autoencoder,2016
5. VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data;PLoS Computational Biology,2014
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献