Incremental and parallel proximal SVM algorithm tailored on the Jetson Nano for the ImageNet challenge

Author:

Do Thanh-Nghi

Abstract

Purpose This paper aims to propose the new incremental and parallel training algorithm of proximal support vector machines (Inc-Par-PSVM) tailored on the edge device (i.e. the Jetson Nano) to handle the large-scale ImageNet challenging problem. Design/methodology/approach The Inc-Par-PSVM trains in the incremental and parallel manner ensemble binary PSVM classifiers used for the One-Versus-All multiclass strategy on the Jetson Nano. The binary PSVM model is the average in bagged binary PSVM models built in undersampling training data block. Findings The empirical test results on the ImageNet data set show that the Inc-Par-PSVM algorithm with the Jetson Nano (Quad-core ARM A57 @ 1.43 GHz, 128-core NVIDIA Maxwell architecture-based graphics processing unit, 4 GB RAM) is faster and more accurate than the state-of-the-art linear SVM algorithm run on a PC [Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores, 32 GB RAM]. Originality/value The new incremental and parallel PSVM algorithm tailored on the Jetson Nano is able to efficiently handle the large-scale ImageNet challenge with 1.2 million images and 1,000 classes.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference110 articles.

1. An overview of machine learning within embedded and mobile devices – optimizations and applications;Sensors,2021

2. Cover trees for nearest neighbor,2006

3. Jetson project of the month: detecting acute lymphoblastic leukemia with nvidia jetson,2022

4. Latent dirichlet allocation;Journal of Machine Learning Research,2003

5. Training support vector machines using adaptive clustering,2004

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3