Performance evaluation of GPU- and cluster-computing for parallelization of compute-intensive tasks

Author:

Döschl Alexander,Keller Max-Emanuel,Mandl Peter

Abstract

Purpose This paper aims to evaluate different approaches for the parallelization of compute-intensive tasks. The study compares a Java multi-threaded algorithm, distributed computing solutions with MapReduce (Apache Hadoop) and resilient distributed data set (RDD) (Apache Spark) paradigms and a graphics processing unit (GPU) approach with Numba for compute unified device architecture (CUDA). Design/methodology/approach The paper uses a simple but computationally intensive puzzle as a case study for experiments. To find all solutions using brute force search, 15! permutations had to be computed and tested against the solution rules. The experimental application comprises a Java multi-threaded algorithm, distributed computing solutions with MapReduce (Apache Hadoop) and RDD (Apache Spark) paradigms and a GPU approach with Numba for CUDA. The implementations were benchmarked on Amazon-EC2 instances for performance and scalability measurements. Findings The comparison of the solutions with Apache Hadoop and Apache Spark under Amazon EMR showed that the processing time measured in CPU minutes with Spark was up to 30% lower, while the performance of Spark especially benefits from an increasing number of tasks. With the CUDA implementation, more than 16 times faster execution is achievable for the same price compared to the Spark solution. Apart from the multi-threaded implementation, the processing times of all solutions scale approximately linearly. Finally, several application suggestions for the different parallelization approaches are derived from the insights of this study. Originality/value There are numerous studies that have examined the performance of parallelization approaches. Most of these studies deal with processing large amounts of data or mathematical problems. This work, in contrast, compares these technologies on their ability to implement computationally intensive distributed algorithms.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference36 articles.

1. Amazon (2021a), “Amazon s3”, available at: https://aws.amazon.com/de/s3/

2. Amazon (2021b), “Amazon EMR”, available at: https://aws.amazon.com/de/emr/

3. Amazon (2021c), “Amazon EC2”, available at: https://aws.amazon.com/de/ec2/

4. Amazon (2021d), “Amazon web services”, available at: https://aws.amazon.com/de/

5. Apache (2021), “Apache hadoop”, available at: http://hadoop.apache.org/

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3