Property Assertion Constraints for ontologies and knowledge graphs

Author:

Dibowski HenrikORCID

Abstract

PurposeThe curation of ontologies and knowledge graphs (KGs) is an essential task for industrial knowledge-based applications, as they rely on the contained knowledge to be correct and error-free. Often, a significant amount of a KG is curated by humans. Established validation methods, such as Shapes Constraint Language, Shape Expressions or Web Ontology Language, can detect wrong statements only after their materialization, which can be too late. Instead, an approach that avoids errors and adequately supports users is required.Design/methodology/approachFor solving that problem, Property Assertion Constraints (PACs) have been developed. PACs extend the range definition of a property with additional logic expressed with SPARQL. For the context of a given instance and property, a tailored PAC query is dynamically built and triggered on the KG. It can determine all values that will result in valid property value assertions.FindingsPACs can avoid the expansion of KGs with invalid property value assertions effectively, as their contained expertise narrows down the valid options a user can choose from. This simplifies the knowledge curation and, most notably, relieves users or machines from knowing and applying this expertise, but instead enables a computer to take care of it.Originality/valuePACs are fundamentally different from existing approaches. Instead of detecting erroneous materialized facts, they can determine all semantically correct assertions before materializing them. This avoids invalid property value assertions and provides users an informed, purposeful assistance. To the author's knowledge, PACs are the only such approach.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference23 articles.

1. Clark & Parsia LLC (2021), “Validation constraints. The Stardog manual”, available at: http://stage.docs.stardog.com.s3-website-us-east-1.amazonaws.com/2.2.4/#_validating_constraints (accessed 11 May 2022).

2. Das, S., Sundara, S. and Cyganiak, R. (2012), “R2RML: RDB to RDF mapping language”, W3C Recommendation, available at: www.w3.org/TR/r2rml/ (accessed 4 July 2022).

3. Property assertion constraints for an informed, error-preventing expansion of knowledge graphs,2021

4. Using knowledge graphs to manage a data lake,2021

5. Using semantic technologies to manage a data lake: data catalog, provenance and access control,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3