A new approach for histological classification of breast cancer using deep hybrid heterogenous ensemble

Author:

Zerouaoui HasnaeORCID,Idri AliORCID,El Alaoui OmarORCID

Abstract

PurposeHundreds of thousands of deaths each year in the world are caused by breast cancer (BC). An early-stage diagnosis of this disease can positively reduce the morbidity and mortality rate by helping to select the most appropriate treatment options, especially by using histological BC images for the diagnosis.Design/methodology/approachThe present study proposes and evaluates a novel approach which consists of 24 deep hybrid heterogenous ensembles that combine the strength of seven deep learning techniques (DenseNet 201, Inception V3, VGG16, VGG19, Inception-ResNet-V3, MobileNet V2 and ResNet 50) for feature extraction and four well-known classifiers (multi-layer perceptron, support vector machines, K-nearest neighbors and decision tree) by means of hard and weighted voting combination methods for histological classification of BC medical image. Furthermore, the best deep hybrid heterogenous ensembles were compared to the deep stacked ensembles to determine the best strategy to design the deep ensemble methods. The empirical evaluations used four classification performance criteria (accuracy, sensitivity, precision and F1-score), fivefold cross-validation, Scott–Knott (SK) statistical test and Borda count voting method. All empirical evaluations were assessed using four performance measures, including accuracy, precision, recall and F1-score, and were over the histological BreakHis public dataset with four magnification factors (40×, 100×, 200× and 400×). SK statistical test and Borda count were also used to cluster the designed techniques and rank the techniques belonging to the best SK cluster, respectively.FindingsResults showed that the deep hybrid heterogenous ensembles outperformed both their singles and the deep stacked ensembles and reached the accuracy values of 96.3, 95.6, 96.3 and 94 per cent across the four magnification factors 40×, 100×, 200× and 400×, respectively.Originality/valueThe proposed deep hybrid heterogenous ensembles can be applied for the BC diagnosis to assist pathologists in reducing the missed diagnoses and proposing adequate treatments for the patients.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference62 articles.

1. Heterogeneous multi-classifier method based on weighted voting for breast cancer detection,2019

2. Detection of mitotic nuclei in breast histopathology images using localized ACM and Random Kitchen Sink based classifier,2016

3. Deep learning for FTIR histology: leveraging spatial and spectral features with convolutional neural networks;Analyst,2019

4. Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: a comparative study with visual explanation;Diagnostics,2021

5. Breast cancer diagnosis from histopathological images using textural is features and CBIR;Artificial Intelligence in Medicine,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3