Author:
Wang Ruoxing,Wang Shoukun,Xue Junfeng,Chen Zhihua,Si Jinge
Abstract
Purpose
This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.
Design/methodology/approach
In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.
Findings
The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.
Originality/value
The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.
Reference23 articles.
1. A method for registration of 3-D shapes;IEEE Transactions on Pattern Analysis and Machine Intelligence,1992
2. Keep rolling whole-body motion control and planning for wheeled quadrupedal robots;IEEE Robotics and Automation Letters,2019
3. Motion control of leg-wheel robot for an unexplored outdoor environment,1996
4. On-manifold pre- integration for real-time visual–inertial odometry;IEEE Transactions on Robotics,2016
5. Fast Segmentation of 3D point clouds for ground vehicles,2010
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献