Study on the characteristics of superconducting electrodynamic suspension system based on dynamic circuit theory

Author:

Hu Daoyu,Zhai Maochun

Abstract

Purpose The purpose of this paper is to analyze the influence of different parameters on the characteristics of the superconducting electrodynamic suspension (EDS) system. Design/methodology/approach The authors used an analytical model based on the dynamic circuit theory to perform the analysis. The authors proposed an inductance criterion to improve the calculation accuracy. They also proposed a three-dimension finite element method (FEM) to verify the validity of the analytical model. Findings The levitation force and guiding force increase with the superconducting magnet (SCM) speed and show a saturated trend, while the drag force decreases with the SCM speed. The vibration characteristic is the inherent characteristic of the superconducting EDS. The frequency and amplitude are affected by the gap between adjacent null-flux coils. The levitation force first increases and subsequently decreases with the levitation height. The total levitation force of the SCM increases with the superconducting coil (SC) number, while the average levitation force of an SC decreases with the SC number. The total levitation force nonlinearly increases with the SC number. Originality/value The authors introduced an inductance criterion for better understanding and using the analytical model, and they also proposed a 3D FEM method. The 3D FEM method could be extended to simulate the other EDS systems with more complex structures which the numerical model is no longer applicable. The results of the parameter study could deepen people’s understanding of EDS.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference13 articles.

1. Calculation of levitation, drag and lateral forces in EDS-MAGLEV transport systems;Archiv Fiir Elektrotechnik,1988

2. A 3-D analytic-based model of a null-flux halbach array electrodynamic suspension device;IEEE Transactions on Magnetics,2015

3. Experimental study on the electrodynamic suspension system with HTSC and PM halbach array magnets;IEEE Trans. On Appl. Supercond,2008

4. Mathematical model of the 5-DOF sled dynamics of an electrodynamic maglev system with a passive sled;IEEE Transactions on Magnetics,2005

5. Status of the Holloman high speed maglev test track(HHSMTT),2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of several factors influencing the effect of induction magnetic levitation;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2022-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3