Improved Jaya algorithm-based FOPID/PID for AVR system

Author:

Bhookya Jailsingh,Jatoth Ravi Kumar

Abstract

Purpose This paper aims to get the optimal controller parameters of fractional order proportional integral derivative (FOPID)/proportional integral derivative (PID) i.e. Kp, Ki, Kd, λ and µ for designing controller in automatic voltage regulator (AVR) system. Design/methodology/approach A novel method is proposed to get the optimal controller parameters for designing controller in AVR system using improved Jaya algorithm (IJA). The time domain objective and regular integral error objectives are used to design the controller to estimate the performance of the AVR system based on optimal tuning FOPID/PID controller. Findings The proposed method captures time domain objective of the FOPID/PID controller design and demonstrates effective transient response and better control action. The efficient tuning of FOPID controller results in high superiority of control efforts. Practical implications The simulations of IJA-based FOPID/PID controller design method are performed in MatLab tool and compared with several methods in the recent state of the art and the same are observed to be robust for the AVR system. Originality/value The developed optimal FOPID/PID controller tuning using IJA optimization method is totally a new approach for the AVR system in the literature.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference31 articles.

1. PID controller tuning for integrating processes;ISA Transactions,2010

2. Tuning of PID controllers for integrating systems using direct synthesis method;ISA Transactions,2015

3. Tuning of fractional order PID controller using CS algorithm for trajectory tracking control,2018

4. Optimal FOPID/PID controller parameters tuning for the AVR system based on sine–cosine-algorithm;Evolutionary Intelligence,2019

5. Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay;Optimal Control Applications and Methods,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3