A 3-D analytic eddy current model for a finite width conductive plate

Author:

Paul Subhra,Z. Bird Jonathan

Abstract

Purpose – A 3-D analytic modeling technique for calculating the eddy current distribution, force and power loss in a conductive plate of finite width and thickness is presented. The derived equations are expressed in a general form so that any magnetic source can be utilized. The model assumes the length of the conductive plate is large and the thickness of the plate is thin but not negligible. The paper aims to discuss these issues. Design/methodology/approach – The conducting and non-conducting regions are formulated in terms of decoupled magnetic vector potential components. In order to accurately compute the eddy current fields and forces the source field only needs to be applied on the surface of the conducting plate. The primary focus is on reducing the eddy current computational time. Findings – The accuracy of the presented approach is verified by utilizing a magnetic rotor that has both a rotational and translational motion. The proposed method is computationally efficient and its accuracy is validated using the finite element method. Research limitations/implications – The conducting plate thickness is assumed to be thin (but not negligible), and this enables the field interaction through the edge of the plate to be neglected. The lateral force is not calculated in the proposed approach. Practical implications – The calculation procedure presented is computationally fast and therefore this can enable the 3-D eddy current forces to be computed in near real-time. Originality/value – This paper presents a fully 3-D analytic based eddy current formlation for computing the eddy current fields and forces in a conducting plate of finite thickness and finite width. The modeling approach is shown to be computationally accurate and relatively fast.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3