Pedestrian evacuation method based on improved cellular automata in emergencies

Author:

Longzhen Zhai,Feng ShaoHong

Abstract

PurposeThe rapid evacuation of personnel in emergency situations is of great significance to the safety of pedestrians. In order to further improve the evacuation efficiency in emergency situations, this paper proposes a pedestrian evacuation model based on improved cellular automata based on microscopic features.Design/methodology/approachFirst, the space is divided into finer grids, so that a single pedestrian occupies multiple grids to show the microscopic behavior between pedestrians. Second, to simulate the velocity of pedestrian movement under different personnel density, a dynamic grid velocity model is designed to establish a linear correspondence relationship with the density of people in the surrounding environment. Finally, the pedestrian dynamic exit selection mechanism is established to simulate the pedestrian dynamic exit selection process.FindingsThe proposed method is applied to single-exit space evacuation, multi-exit space evacuation, and space evacuation with obstacles, respectively. Average speed and personnel evacuation decisions are analyzed in specific applications. The method proposed in this paper can provide the optimal evacuation plan for pedestrians in multiple exit and obstacle environments.Practical implications/Social implicationsIn fire and emergency situations, the method proposed in this paper can provide a more effective evacuation strategy for pedestrians. The method proposed in this paper can quickly get pedestrians out of the dangerous area and provide a certain reference value for the stable development of society.Originality/valueThis paper proposes a cellular automata pedestrian evacuation method based on a fine grid velocity model. This method can more realistically simulate the microscopic behavior of pedestrians. The proposed model increases the speed of pedestrian movement, allowing pedestrians to dynamically adjust the speed according to the specific situation.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference40 articles.

1. Modeling crowd dynamics from a complex system viewpoint;Mathematical Models and Methods in Applied Sciences,2012

2. A biased intruder in a dense quiescent medium: looking beyond the force–velocity relation;Journal of Statistical Mechanics: Theory and Experiment,2013

3. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes;Physical Review E,2014

4. Emergent fundamental pedestrian flows from cellular automata microsimulation;Transportation Research Record,1998

5. Simulation of pedestrian dynamics using a two-dimensional cellular automaton;Physica A: Statistical Mechanics and Its Applications,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3