Numerical approximation of parabolic singularly perturbed problems with large spatial delay and turning point

Author:

Sharma Amit,Rai PratimaORCID

Abstract

PurposeSingular perturbation turning point problems (SP-TPPs) involving parabolic convection–diffusion Partial Differential Equations (PDEs) with large spatial delay are studied in this paper. These type of equations are important in various fields of mathematics and sciences such as computational neuroscience and require specialized techniques for their numerical analysis.Design/methodology/approachWe design a numerical method comprising a hybrid finite difference scheme on a layer-adapted mesh for the spatial discretization and an implicit-Euler scheme on a uniform mesh in the temporal variable. A combination of the central difference scheme and the simple upwind scheme is used as the hybrid scheme.FindingsConsistency, stability and convergence are investigated for the proposed scheme. It is established that the present approach has parameter-uniform convergence of OΔτ+K2(lnK)2, where Δτ and K denote the step size in the time direction and number of mesh-intervals in the space direction.Originality/valueParabolic SP-TPPs exhibiting twin boundary layers with large spatial delay have not been studied earlier in the literature. The presence of delay portrays an interior layer in the considered problem’s solution in addition to twin boundary layers. Numerical illustrations are provided to demonstrate the theoretical estimates.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3