UNAT: UNstructured Acceleration Toolkit on SW26010 many-core processor

Author:

Liu Hongbin,Ren Hu,Gu Hanfeng,Gao Fei,Yang Guangwen

Abstract

PurposeThe purpose of this paper is to provide an automatic parallelization toolkit for unstructured mesh-based computation. Among all kinds of mesh types, unstructured meshes are dominant in engineering simulation scenarios and play an essential role in scientific computations for their geometrical flexibility. However, the high-fidelity applications based on unstructured grids are still time-consuming, no matter for programming or running.Design/methodology/approachThis study develops an efficient UNstructured Acceleration Toolkit (UNAT), which provides friendly high-level programming interfaces and elaborates lower level implementation on the target hardware to get nearly hand-optimized performance. At the present state, two efficient strategies, a multi-level blocks method and a row-subsections method, are designed and implemented on Sunway architecture. Random memory access and write–write conflict issues of unstructured meshes have been handled by partitioning, coloring and other hardware-specific techniques. Moreover, a data-reuse mechanism is developed to increase the computational intensity and alleviate the memory bandwidth bottleneck.FindingsThe authors select sparse matrix-vector multiplication as a performance benchmark of UNAT across different data layouts and different matrix formats. Experimental results show that the speed-ups reach up to 26× compared to single management processing element, and the utilization ratio tests indicate the capability of achieving nearly hand-optimized performance. Finally, the authors adopt UNAT to accelerate a well-tuned unstructured solver and obtain speed-ups of 19× and 10× on average for main kernels and overall solver, respectively.Originality/valueThe authors design an unstructured mesh toolkit, UNAT, to link the hardware and numerical algorithm, and then, engineers can focus on the algorithms and solvers rather than the parallel implementation. For the many-core processor SW26010 of the fastest supercomputer in China, UNAT yields up to 26× speed-ups and achieves nearly hand-optimized performance.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference27 articles.

1. Optimizations of unstructured aerodynamics computations for many-core architectures;IEEE Transactions on Parallel and Distributed Systems,2018

2. The FEniCS project version 1.5;Archive of Numerical Software,2015

3. Mesh independent loop fusion for unstructured mesh applications,2012

4. PT-Scotch: a tool for efficient parallel graph ordering;Parallel Computing,2008

5. CUDA programming: a developer’s guide to parallel computing with GPUs,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3