Novel computational mathematical algorithms for structural optimization using graph-theoretical methods

Author:

Shafiei Dizaji FarzadORCID,Shafiei Dizaji Mehrdad

Abstract

PurposeThe purpose is to reduce round-off errors in numerical simulations. In the numerical simulation, different kinds of errors may be created during analysis. Round-off error is one of the sources of errors. In numerical analysis, sometimes handling numerical errors is challenging. However, by applying appropriate algorithms, these errors are manageable and can be reduced. In this study, five novel topological algorithms were proposed in setting up a structural flexibility matrix, and five different examples were used in applying the proposed algorithms. In doing so round-off errors were reduced remarkably.Design/methodology/approachFive new algorithms were proposed in order to optimize the conditioning of structural matrices. Along with decreasing the size and duration of analyses, minimizing analytical errors is a critical factor in the optimal computer analysis of skeletal structures. Appropriate matrices with a greater number of zeros (sparse), a well structure and a well condition are advantageous for this objective. As a result, a problem of optimization with various goals will be addressed. This study seeks to minimize analytical errors such as rounding errors in skeletal structural flexibility matrixes via the use of more consistent and appropriate mathematical methods. These errors become more pronounced in particular designs with ill-suited flexibility matrixes; structures with varying stiffness are a frequent example of this. Due to the usage of weak elements, the flexibility matrix has a large number of non-diagonal terms, resulting in analytical errors. In numerical analysis, the ill-condition of a matrix may be resolved by moving or substituting rows; this study examined the definition and execution of these modifications prior to creating the flexibility matrix. Simple topological and algebraic features have been mostly utilized in this study to find fundamental cycle bases with particular characteristics. In conclusion, appropriately conditioned flexibility matrices are obtained, and analytical errors are reduced accordingly.Findings(1) Five new algorithms were proposed in order to optimize the conditioning of structural flexibility matrices. (2) A JAVA programming language was written for all five algorithms and a friendly GUI software tool is developed to visualize sub-optimal cycle bases. (3) Topological and algebraic features of the structures were utilized in this study.Research limitations/implicationsThis is a multi-objective optimization problem which means that sparsity and well conditioning of a matrix cannot be optimized simultaneously. In conclusion, well-conditioned flexibility matrices are obtained, and analytical errors are reduced accordingly.Practical implicationsEngineers always finding mathematical modeling of real-world problems and make them as simple as possible. In doing so, lots of errors will be created and these errors could cause the mathematical models useless. Applying decent algorithms could make the mathematical model as precise as possible.Social implicationsErrors in numerical simulations should reduce due to the fact that they are toxic for real-world applications and problems.Originality/valueThis is an original research. This paper proposes five novel topological mathematical algorithms in order to optimize the structural flexibility matrix.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3