A generic numerical method for treating a system of Volterra integro-differential equations with multiple delays and variable bounds

Author:

Kürkçü Ömür KıvançORCID,Sezer MehmetORCID

Abstract

PurposeThis study aims to treat a novel system of Volterra integro-differential equations with multiple delays and variable bounds, constituting a generic numerical method based on the matrix equation and a combinatoric-parametric Charlier polynomials. The proposed method utilizes these polynomials for the matrix relations at the collocation points.Design/methodology/approachThanks to the combinatorial eligibility of the method, the functional terms can be transformed into the generic matrix relations with low dimensions, and their resulting matrix equation. The obtained solutions are tested with regard to the parametric behaviour of the polynomials with $\alpha$, taking into account the condition number of an outcome matrix of the method. Residual error estimation improves those solutions without using any external method. A calculation of the residual error bound is also fulfilled.FindingsAll computations are carried out by a special programming module. The accuracy and productivity of the method are scrutinized via numerical and graphical results. Based on the discussions, one can point out that the method is very proper to solve a system in question.Originality/valueThis paper introduces a generic computational numerical method containing the matrix expansions of the combinatoric Charlier polynomials, in order to treat the system of Volterra integro-differential equations with multiple delays and variable bounds. Thus, the method enables to evaluate stiff differential and integral parts of the system in question. That is, these parts generates two novel components in terms of unknown terms with both differentiated and delay arguments. A rigorous error analysis is deployed via the residual function. Four benchmark problems are solved and interpreted. Their graphical and numerical results validate accuracy and efficiency of the proposed method. In fact, a generic method is, thereby, provided into the literature.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3