Simplifying credit scoring rules using LVQ + PSO

Author:

Lanzarini Laura Cristina,Villa Monte Augusto,Bariviera Aurelio F.,Jimbo Santana Patricia

Abstract

Purpose One of the key elements in the banking industry relies on the appropriate selection of customers. To manage credit risk, banks dedicate special efforts to classify customers according to their risk. The usual decision-making process consists of gathering personal and financial information about the borrower. Processing this information can be time-consuming, and presents some difficulties because of the heterogeneous structure of data. Design/methodology/approach This paper presents an alternative method that is able to generate rules that work not only on numerical attributes but also on nominal ones. The key feature of this method, called learning vector quantization and particle swarm optimization (LVQ + PSO), is the finding of a reduced set of classifying rules. This is possible because of the combination of a competitive neural network with an optimization technique. Findings These rules constitute a predictive model for credit risk approval. The reduced quantity of rules makes this method useful for credit officers aiming to make decisions about granting a credit. It also could act as an orientation for borrower’s self evaluation about her/his creditworthiness. Research limitations/implications In spite of the fact that conducted tests showed no evidence of dependence between results and the initial size of the LVQ network, it is considered desirable to repeat the measurements using an LVQ network of minimum size and a version of variable population PSO to adequately explore the solution space in the future. Practical implications In the past decades, there has been an increase in consumer credit. Retail banking is a growing industry. Not only has there been a boom in credit card memberships, specially in emerging economies, but also an increase in small consumption credits. For example, it is very common in emerging economies that families buy home appliances on installments. In those countries, the association of a home appliance shop with a financial institution is usual, to provide customers with quick-decision credit line facilities. The existence of such a financial instrument aids to boost sales. This association generates conflict of interests. On one hand, the home appliance shop wants to sell products to all customers. Therefore, it is in its best interest to promote a generous credit policy. On the other hand, the financial institution wants to maximize the revenue from credits, leading to a strict surveillance of loan losses. Having a fair and transparent credit-granting policy favors a good business relationship between home appliances shops and financial institutions. One way of developing such a policy is to construct objective rules to decide to grant or deny a credit application. Social implications Better credit decision rules generate enhanced risk sharing. In addition, it improves transparency in credit acceptance decisions, giving less room to arbitrary decisions. Originality/value This study develops a new method that combines a competitive neural network and an optimization technique. It was applied to a real database of a financial institution in a developing country.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3