Investigation into the packaging and operation of an electronic tongue sensor for industrial applications

Author:

Twomey Karen,Murphy Killan

Abstract

PurposeThe purpose of this paper is to describe the packaging and operation of an electronic tongue sensor. The sensor will be used in an industrial setting and the packaging needs to withstand the harsh clean‐in‐place (CIP) routines that are commonly employed. A suitable epoxy, Loctite FP4450 HYSOL, was identified from a number of packaging materials. The sensor was validated by carrying out cyclic voltammetry in a number of reference solutions including sulphuric acid solution and ferrocyanide in potassium chloride solution, which gave well‐defined reduction and oxidation peaks that could be compared with the literature. The operation of the sensor in mixtures of salt and citric acid solutions was also investigated and it was seen that by applying a carefully selected voltage window and scan rate to each electrode, the sensor could distinguish between the different mixtures. Further experimentation and the application of principle component analysis have shown the sensor to have good repeatability.Design/methodology/approachThis paper concentrates on the ability of the sensor packaging to withstand a typical industrial CIP procedure. A number of packaging materials are investigated. In addition, the operation of the sensor has been investigated by using cyclic voltammetry.FindingsOne successful packaging material is Loctite 9461A&B HYSOL. Poly ether ether ketone also performs well after repeated CIP exposure. For ease of manufacture, Loctite FP4450 HYSOL is the epoxy of choice. An extensive matrix of test solutions was prepared from salt and citric acid powders. The aim was to investigate the sensor's ability to distinguish between increasing concentration levels of salt and citric acid and also to investigate how the sensor operates in mixtures of the solutions. By carefully choosing the applied voltage window and scan rate, the electrodes can distinguish between the mixturesOriginality/valueThis research work has highlighted a robust packaging material to withstand industrial CIP procedures.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3