Taguchi or classical design of experiments: a perspective from a practitioner
Author:
Publisher
Emerald
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering
Reference1 articles.
1. Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments
Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness;Journal of Composite Materials;2024-09-09
2. Optimization techniques for electrochemical devices for hydrogen production and energy storage applications;International Journal of Hydrogen Energy;2024-01
3. Techniques Used for Process Optimization of Wire Electrical Discharge Machining: A Review;ASEC 2023;2023-10-26
4. Método Taguchi para la optimización de parámetros en la simulación numérica del proceso de inyección de plástico;REVISTA DE CIENCIAS TECNOLÓGICAS;2023-10-24
5. Optimization of Microfluidic Biosensor Enhanced by Electrothermal Effect Using Taguchi's Method Coupled with MLP-ANN Models;2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE);2023-10-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3