Neural network‐based parameter estimation for non‐linear finite element analyses

Author:

Okuda Hiroshi,Yoshimura Shinobu,Yagawa Genki,Matsuda Akihiro

Abstract

Describes the parameter estimation procedures for the non‐linear finite element analysis using the hierarchical neural network. These procedures can be classified as the neural network based inverse analysis, which has been investigated by the authors. The optimum values of the parameters involved in the non‐linear finite element analysis are generally dependent on the configuration of the analysis model, the initial condition, the boundary condition, etc., and have been determined in a heuristic manner. The procedures to estimate such multiple parameters consist of the following three steps: a set of training data, which is produced over a number of non‐linear finite element computations, is prepared; a neural network is trained using the data set; the neural network is used as a tool for searching the appropriate values of multiple parameters of the non‐linear finite element analysis. The present procedures were tested for the parameter estimation of the augmented Lagrangian method for the steady‐state incompressible viscous flow analysis and the time step evaluation of the pseudo time‐dependent stress analysis for the incompressible inelastic structure.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Machine Learning and Deep Learning in Finite Element Analysis: A Comprehensive Review;Archives of Computational Methods in Engineering;2024-03-01

2. Deep learning in computational mechanics: a review;Computational Mechanics;2024-01-13

3. INVERSE PROBLEMS IN THE LIGHT OF HOMOGENIZATION METHODS: IDENTIFICATION OF A COMPOSITE MICROSTRUCTURE;International Journal for Multiscale Computational Engineering;2022

4. Identifications of Analysis Parameters;Lecture Notes on Numerical Methods in Engineering and Sciences;2021

5. Finite Elements Using Neural Networks and a Posteriori Error;Archives of Computational Methods in Engineering;2020-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3