Fairness evaluation of marketing algorithms: a framework for equity distribution

Author:

Yang Mengxi,Guo Jie,Zhu Lei,Zhu Huijie,Song Xia,Zhang Hui,Xu Tianxiang

Abstract

PurposeObjectively evaluating the fairness of the algorithm, exploring in specific scenarios combined with scenario characteristics and constructing the algorithm fairness evaluation index system in specific scenarios.Design/methodology/approachThis paper selects marketing scenarios, and in accordance with the idea of “theory construction-scene feature extraction-enterprise practice,” summarizes the definition and standard of fairness, combs the application link process of marketing algorithms and establishes the fairness evaluation index system of marketing equity allocation algorithms. Taking simulated marketing data as an example, the fairness performance of marketing algorithms in some feature areas is measured, and the effectiveness of the evaluation system proposed in this paper is verified.FindingsThe study reached the following conclusions: (1) Different fairness evaluation criteria have different emphases, and may produce different results. Therefore, different fairness definitions and standards should be selected in different fields according to the characteristics of the scene. (2) The fairness of the marketing equity distribution algorithm can be measured from three aspects: marketing coverage, marketing intensity and marketing frequency. Specifically, for the fairness of coverage, two standards of equal opportunity and different misjudgment rates are selected, and the standard of group fairness is selected for intensity and frequency. (3) For different characteristic fields, different degrees of fairness restrictions should be imposed, and the interpretation of their calculation results and the means of subsequent intervention should also be different according to the marketing objectives and industry characteristics.Research limitations/implicationsFirst of all, the fairness sensitivity of different feature fields is different, but this paper does not classify the importance of feature fields. In the future, we can build a classification table of sensitive attributes according to the importance of sensitive attributes to give different evaluation and protection priorities. Second, in this paper, only one set of marketing data simulation data is selected to measure the overall algorithm fairness, after which multiple sets of marketing campaigns can be measured and compared to reflect the long-term performance of marketing algorithm fairness. Third, this paper does not continue to explore interventions and measures to improve algorithmic fairness. Different feature fields should be subject to different degrees of fairness constraints, and therefore their subsequent interventions should be different, which needs to be continued to be explored in future research.Practical implicationsThis paper combines the specific features of marketing scenarios and selects appropriate fairness evaluation criteria to build an index system for fairness evaluation of marketing algorithms, which provides a reference for assessing and managing the fairness of marketing algorithms.Social implicationsAlgorithm governance and algorithmic fairness are very important issues in the era of artificial intelligence, and the construction of the algorithmic fairness evaluation index system in marketing scenarios in this paper lays a safe foundation for the application of AI algorithms and technologies in marketing scenarios, provides tools and means of algorithm governance and empowers the promotion of safe, efficient and orderly development of algorithms.Originality/valueIn this paper, firstly, the standards of fairness are comprehensively sorted out, and the difference between different standards and evaluation focuses is clarified, and secondly, focusing on the marketing scenario, combined with its characteristics, key fairness evaluation links are put forward, and different standards are innovatively selected to evaluate the fairness in the process of applying marketing algorithms and to build the corresponding index system, which forms the systematic fairness evaluation tool of marketing algorithms.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3