Self adaptive fruit fly algorithm for multiple workflow scheduling in cloud computing environment

Author:

Aggarwal Ambika,Dimri Priti,Agarwal Amit,Bhatt Ashutosh

Abstract

Purpose In general, cloud computing is a model of on-demand business computing that grants a convenient access to shared configurable resources on the internet. With the increment of workload and difficulty of tasks that are submitted by cloud consumers; “how to complete these tasks effectively and rapidly with limited cloud resources?” is becoming a challenging question. The major point of a task scheduling approach is to identify a trade-off among user needs and resource utilization. However, tasks that are submitted by varied users might have diverse needs of computing time, memory space, data traffic, response time, etc. This paper aims to proposes a new way of task scheduling. Design/methodology/approach To make the workflow completion in an efficient way and to reduce the cost and flow time, this paper proposes a new way of task scheduling. Here, a self-adaptive fruit fly optimization algorithm (SA-FFOA) is used for scheduling the workflow. The proposed multiple workflow scheduling model compares its efficiency over conventional methods in terms of analysis such as performance analysis, convergence analysis and statistical analysis. From the outcome of the analysis, the betterment of the proposed approach is proven with effective workflow scheduling. Findings The proposed algorithm is more superior regarding flow time with the minimum value, and the proposed model is enhanced over FFOA by 0.23%, differential evolution by 2.48%, artificial bee colony (ABC) by 2.85%, particle swarm optimization (PSO) by 2.46%, genetic algorithm (GA) by 2.33% and expected time to compute (ETC) by 2.56%. While analyzing the make span case, the proposed algorithm is 0.28%, 0.15%, 0.38%, 0.20%, 0.21% and 0.29% better than the conventional methods such as FFOA, DE, ABC, PSO, GA and ETC, respectively. Moreover, the proposed model has attained less cost, which is 2.14% better than FFOA, 2.32% better than DE, 3.53% better than ABC, 2.43% better than PSO, 2.07% better than GA and 2.90% better than ETC, respectively. Originality/value This paper presents a new way of task scheduling for making the workflow completion in an efficient way and for reducing the cost and flow time. This is the first paper uses SA-FFOA for scheduling the workflow.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3