Dimensional analysis of 3D-printed acetabular cups for hip arthroplasty using X-ray microcomputed tomography

Author:

Dall’Ava Lorenzo,Hothi Harry,Henckel Johann,Di Laura Anna,Bergiers Sean,Shearing Paul,Hart Alister

Abstract

Purpose Three-dimensional (3D) printing is increasingly used to produce orthopaedic components for hip arthroplasty, such as acetabular cups, which show complex lattice porous structures and shapes. However, limitations on the quality of the final implants are present; thus, investigations are needed to ensure adequate quality and patients safety. X-ray microcomputed tomography (micro-CT) has been recognised to be the most suitable method to evaluate the complexity of 3D-printed parts. The purpose of this study was to assess the reliability of a micro-CT analysis method comparing it with reference systems, such as coordinate measuring machine and electron microscopy. Design/methodology/approach 3D-printed acetabular components for hip arthroplasty (n = 2) were investigated. Dimensions related to the dense and porous regions of the samples were measured. The micro-CT scanning parameters (voltage – kV, current – µA) were optimised selecting six combinations of beam voltage and current. Findings Micro-CT showed good correlation and agreement with both coordinate measuring machine and scanning electron microscopy when optimal scanning parameters were selected (130 kV – 100 µA to 180 kV – 80 µA). Mean discrepancies of 50 µm (± 300) and 20 µm (± 60) were found between the techniques for dense and porous dimensions. Investigation method such as micro-CT imaging may help to better understand the impact of 3D printing manufacturing technology on the properties of orthopaedic implants. Originality/value The optimisation of the scanning parameters and the validation of this method with reference techniques may guide further analysis of similar orthopaedic components.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference25 articles.

1. ASTM E1570-11 (2011), Standard Practice for Computed Tomographic (CT) Examination, doi: 10.1520/E1570-11.2.

2. Direct visualization and quantification of bone growth into porous titanium implants using micro computed tomography;Journal of Materials Science: Materials in Medicine,2011

3. Measuring agreement in method comparison studies;Statistical Method in Medical Research,1999

4. 3D printed acetabular cups for total hip arthroplasty: a review article;Metals,2019

5. Quality control of a laser additive manufactured medical implant by X-Ray tomography;3D Printing and Additive Manufacturing,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3