Author:
Robinson John,Arjunan Arun,Baroutaji Ahmad,Martí Miguel,Tuñón Molina Alberto,Serrano-Aroca Ángel,Pollard Andrew
Abstract
Purpose
The COVID-19 pandemic emphasises the need for antiviral materials that can reduce airborne and surface-based virus transmission. This study aims to propose the use of additive manufacturing (AM) and surrogate modelling for the rapid development and deployment of novel copper-tungsten-silver (Cu-W-Ag) microporous architecture that shows strong antiviral behaviour against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Design/methodology/approach
The research combines selective laser melting (SLM), in-situ alloying and surrogate modelling to conceive the antiviral Cu-W-Ag architecture. The approach is shown to be suitable for redistributed manufacturing by representing the pore morphology through a surrogate model that parametrically manipulates the SLM process parameters: hatch distance (h_d), scan speed (S_s) and laser power (L_p). The method drastically simplifies the three-dimensional (3D) printing of microporous materials by requiring only global geometrical dimensions solving current bottlenecks associated with high computed aided design data transfer required for the AM of porous materials.
Findings
The surrogate model developed in this study achieved an optimum parametric combination that resulted in microporous Cu-W-Ag with average pore sizes of 80 µm. Subsequent antiviral evaluation of the optimum architecture showed 100% viral inactivation within 5 h against a biosafe enveloped ribonucleic acid viral model of SARS-CoV-2.
Research limitations/implications
The Cu-W-Ag architecture is suitable for redistributed manufacturing and can help reduce surface contamination of SARS-CoV-2. Nevertheless, further optimisation may improve the virus inactivation time.
Practical implications
The study was extended to demonstrate an open-source 3D printed Cu-W-Ag antiviral mask filter prototype.
Social implications
The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where redistributed manufacturing of 3D printed antiviral materials can achieve rapid solutions.
Originality/value
The papers present for the first time a methodology to digitally conceive and print-on-demand a novel Cu-W-Ag alloy that shows high antiviral behaviour against SARS-CoV-2.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference95 articles.
1. Smart Tribological Coating
2. Tissue Engineering Concept
3. Mechanical performance of highly permeable laser melted Ti6Al4V bone Scaffolds;Journal of the Mechanical Behavior of Biomedical Materials,2020
4. Additively manufactured AlSi10Mg inherently stable thin and thick-walled lattice with negative Poisson’s ratio;Composite Structures,2020
5. Journal of the mechanical behavior of biomedical materials 3D printed auxetic nasopharyngeal swabs for COVID-19 sample collection;Journal of the Mechanical Behavior of Biomedical Materials,2020
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献