Properties of soft magnetic Fe-Co-V alloy produced by laser powder bed fusion

Author:

Riipinen Tuomas,Metsä-Kortelainen Sini,Lindroos Tomi,Keränen Janne Sami,Manninen Aino,Pippuri-Mäkeläinen Jenni

Abstract

Purpose The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF). Design/methodology/approach Ternary soft magnetic Fe-49Co-2V powder was produced by gas atomization and used in an L-PBF machine to produce samples for material characterization. The L-PBF process parameters were optimized for the material, using a design of experiments approach. The printed samples were exposed to different heat treatment cycles to improve the magnetic properties. The magnetic properties were measured with quasi-static direct current and alternating current measurements at different frequencies and magnetic flux densities. The mechanical properties were characterized with tensile tests. Electrical resistivity of the material was measured. Findings The optimized L-PBF process parameters resulted in very low porosity. The magnetic properties improved greatly after the heat treatments because of changes in microstructure. Based on the quasi-static DC measurement results, one of the heat treatment cycles led to magnetic saturation, permeability and coercivity values comparable to a commercial Fe-Co-V alloy. The other heat treatments resulted in abnormal grain growth and poor magnetic performance. The AC measurement results showed that the magnetic losses were relatively high in the samples owing to formation of eddy currents. Research limitations/implications The influence of L-PBF process parameters on the microstructure was not investigated; hence, understanding the relationship between process parameters, heat treatments and magnetic properties would require more research. Originality/value The relationship between microstructure, chemical composition, heat treatments, resistivity and magnetic/mechanical properties of L-PBF processed Fe-Co-V alloy has not been reported previously.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference25 articles.

1. Ackermann, F.W., Casani, R.T., Klawitter, W.A. and Heydt, G.B. (1970), “Magnetic alloy”, US Patent 3634072.

2. Microstructure and electro-magnetic properties of a nickel-based anti-magnetic shielding alloy,2016

3. Influence of manufacture process on magnetic property of FeCoV alloy,2015

4. Laser additive processing of Fe-Si-B-Cu-Nb magnetic alloys;Journal of Manufacturing Processes, the Society of Manufacturing Engineers,2017

5. Metallurgy of high-silicon steel parts produced using selective laser melting;Acta Materialia,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3