Optimization of delay time and environmental pollution in scheduling of production and transportation system: a novel multi-society genetic algorithm approach

Author:

Moghimi Mostafa,Beheshtinia Mohammad Ali

Abstract

Purpose The purpose of this study is to investigate the optimization of the scheduling of production and transportation systems while considering delay time (DT) and environmental pollution (EP) concurrently. To this, an integrated multi-site manufacturing process using a cumulative transportation system is investigated. Additionally, a novel multi-society genetic algorithm is developed to reach the best answers. Design/methodology/approach A bi-objective model is proposed to optimize the production and transportation process with the objectives of minimizing DT and EP. This is solved by a social dynamic genetic algorithm (SDGA), which is a novel multi-society genetic algorithm, in scenarios of equal and unequal impacts of each objective. The impacts of each objective are calculated by the analytical hierarchical process (AHP) using experts’ opinions. Results are compared by dynamic genetic algorithm and optimum solution results. Findings Results clearly depict the efficiency of the proposed algorithm and model in the scheduling of production and transportation systems with the objectives of minimizing DT and EP concurrently. Although SDGA’s performance is acceptable in all cases, in comparison to other genetic algorithms, it needs more process time which is the cost of reaching better answers. Additionally, SDGA had better performance in variable weights of objectives in comparison to itself and other genetic algorithms. Research limitations/implications This research is an improvement which allows both society and industry to elevate the levels of their satisfaction while their social responsibilities have been glorified through assuaging the concerns of customers on distribution networks’ emission, competing more efficient and effective in the global market and having the ability to make deliberate decisions far from bias. Additionally, implications of the developed genetic algorithm help directly to the organizations engaged with intelligent production and/or transportation planning which society will be merited indirectly from their outcomes. It also could be utilitarian for organizations that are engaged with small, medium and big data analysis in their processes and want to use more effective and more efficient tools. Originality/value Optimization of EP and DT are considered simultaneously in both model and algorithm in this study. Besides, a novel genetic algorithm, SDGA, is proposed. In this multi-society algorithm, each society is focused on a particular objective; however, in one society all the feasible answers will have been integrated and optimization will have been continued.

Publisher

Emerald

Subject

General Business, Management and Accounting

Reference51 articles.

1. Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia;Renewable and Sustainable Energy Reviews,2016

2. Sustaining the shelf life of fresh food in cold chain – a burden on the environment;Alexandria Engineering Journal,2016

3. Energy demand and CO2 emissions from urban on-road transport in Delhi: current and future projections under various policy measures;Journal of Cleaner Production,2016

4. Approximation algorithm for the on-line multi-customer two-level supply chain scheduling problem;Operations Research Letters,2013

5. Injured transportation quality enhancement during natural disaster from the various geographical zones;Human Geography Research Quarterly,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3