Abstract
PurposeThis study aims to identify and assess the key ethical challenges associated with integrating artificial intelligence (AI) in knowledge-sharing (KS) practices and their implications for decision-making (DM) processes within organisations.Design/methodology/approachThe study employs a mixed-methods approach, beginning with a comprehensive literature review to extract background information on AI and KS and to identify potential ethical challenges. Subsequently, a confirmatory factor analysis (CFA) is conducted using data collected from individuals employed in business settings to validate the challenges identified in the literature and assess their impact on DM processes.FindingsThe findings reveal that challenges related to privacy and data protection, bias and fairness and transparency and explainability are particularly significant in DM. Moreover, challenges related to accountability and responsibility and the impact of AI on employment also show relatively high coefficients, highlighting their importance in the DM process. In contrast, challenges such as intellectual property and ownership, algorithmic manipulation and global governance and regulation are found to be less central to the DM process.Originality/valueThis research contributes to the ongoing discourse on the ethical challenges of AI in knowledge management (KM) and DM within organisations. By providing insights and recommendations for researchers, managers and policymakers, the study emphasises the need for a holistic and collaborative approach to harness the benefits of AI technologies whilst mitigating their associated risks.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献