Research on optimization of index system design and its inspection method: data quality diagnosis, index classification and stratification

Author:

Yin Kedong,Cao Yun,Zhou Shiwei,Lv Xinman

Abstract

PurposeThe purposes of this research are to study the theory and method of multi-attribute index system design and establish a set of systematic, standardized, scientific index systems for the design optimization and inspection process. The research may form the basis for a rational, comprehensive evaluation and provide the most effective way of improving the quality of management decision-making. It is of practical significance to improve the rationality and reliability of the index system and provide standardized, scientific reference standards and theoretical guidance for the design and construction of the index system.Design/methodology/approachUsing modern methods such as complex networks and machine learning, a system for the quality diagnosis of index data and the classification and stratification of index systems is designed. This guarantees the quality of the index data, realizes the scientific classification and stratification of the index system, reduces the subjectivity and randomness of the design of the index system, enhances its objectivity and rationality and lays a solid foundation for the optimal design of the index system.FindingsBased on the ideas of statistics, system theory, machine learning and data mining, the focus in the present research is on “data quality diagnosis” and “index classification and stratification” and clarifying the classification standards and data quality characteristics of index data; a data-quality diagnosis system of “data review – data cleaning – data conversion – data inspection” is established. Using a decision tree, explanatory structural model, cluster analysis, K-means clustering and other methods, classification and hierarchical method system of indicators is designed to reduce the redundancy of indicator data and improve the quality of the data used. Finally, the scientific and standardized classification and hierarchical design of the index system can be realized.Originality/valueThe innovative contributions and research value of the paper are reflected in three aspects. First, a method system for index data quality diagnosis is designed, and multi-source data fusion technology is adopted to ensure the quality of multi-source, heterogeneous and mixed-frequency data of the index system. The second is to design a systematic quality-inspection process for missing data based on the systematic thinking of the whole and the individual. Aiming at the accuracy, reliability, and feasibility of the patched data, a quality-inspection method of patched data based on inversion thought and a unified representation method of data fusion based on a tensor model are proposed. The third is to use the modern method of unsupervised learning to classify and stratify the index system, which reduces the subjectivity and randomness of the design of the index system and enhances its objectivity and rationality.

Publisher

Emerald

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Reference51 articles.

1. An N-soft set approach to rough sets;IEEE Transactions on Fuzzy Systems,2019

2. A comparative study of multiple interpolation methods in longitudinal missing data;China Health Statistics,2016

3. Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach;Applied Soft Computing,2015

4. Naive Bayesian classification algorithm based on improved feature weighting;Research on Computer Application,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3