Intelligent crop management system for improving yield in maize production: evidence from India

Author:

Vishnoi Sakshi,Persis JinilORCID

Abstract

PurposeManaging weeds and pests in cropland is one of the major concerns in agriculture that greatly affects the quantity and quality of the produce. While the success of preventing potential weeds and pests is not guaranteed, early detection and diagnosis help manage them effectively to ensure crops’ growth and healthDesign/methodology/approachWe propose a diagnostic framework for crop management with automatic weed and pest detection and identification in maize crops using residual neural networks. We train two models, one for weed detection with a labeled image dataset of maize and commonly occurring weed plants, and another for leaf disease detection using a labeled image dataset of healthy and infected maize leaves. The global and local explanations of image classification are obtained and presentedFindingsWeed and disease detection and identification can be accurately performed using deep-learning neural networks. Weed detection is accurate up to 97%, and disease detection up to 95% is made on average and the results are presented. Further, using this crop management system, we can detect the presence of weeds and pests in the maize crop early, and the annual yield of the maize crop can potentially increase by 90% theoretically with suitable control actionsPractical implicationsThe proposed diagnostic models can be further used on farms to monitor the health of maize crops. Images obtained from drones and robots can be fed to these models, which can then automatically detect and identify weed and disease attacks on maize farms. This offers early diagnosis, which enables necessary treatment and control of crops at the early stages without affecting the yield of the maize cropSocial implicationsThe proposed crop management framework allows treatment and control of weeds and pests only in the affected regions of the farms and hence minimizes the use of harmful pesticides and herbicides and their related health effects on consumers and farmers.Originality/valueThis study presents an integrated weed and disease diagnostic framework, which is scarcely reported in the literature

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3