Author:
Singh Ravinder,Nagla Kuldeep Singh
Abstract
Purpose
Modern service robots are designed to work in a complex indoor environment, in which the robot has to interact with the objects in different ambient light intensities (day light, tube light, halogen light and dark ambiance). The variations in sudden ambient light intensities often cause an error in the sensory information of optical sensors like laser scanner, which reduce the reliability of the sensor in applications such as mapping, path planning and object detection of a mobile robot. Laser scanner is an optical sensor, so sensory information depends upon parameters like surface reflectivity, ambient light condition, texture of the targets, etc. The purposes of this research are to investigate and remove the effect of variation in ambient light conditions on the laser scanner to achieve robust autonomous mobile robot navigation.
Design/methodology/approach
The objective of this study is to analyze the effect of ambient light condition (dark ambiance, tube light and halogen bulb) on the accuracy of the laser scanner for the robust autonomous navigation of mobile robot in diverse illumination environments. A proposed AIFA (Adaptive Intensity Filter Algorithm) approach is designed in robot operating system (ROS) and implemented on a mobile robot fitted with laser scanner to reduce the effect of high-intensity ambiance illumination of the environment.
Findings
It has been experimentally found that the variation in the measured distance in dark is more consistent and accurate as compared to the sensory information taken in high-intensity tube light/halogen bulbs and in sunlight. The proposed AIFA approach is implement on a laser scanner fitted on a mobile robot which navigates in the high-intensity ambiance-illuminating complex environment. During autonomous navigation of mobile robot, while implementing the AIFA filter, the proportion of cession with the obstacles is reduce to 23 per cent lesser as compared to conventional approaches.
Originality/value
The proposed AIFA approach reduced the effect of the varying ambient light conditions in the sensory information of laser scanner for the applications such as autonomous navigation, path planning, mapping, etc. in diverse ambiance environment.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Reference22 articles.
1. Characterization of infrared range-finder PBS-03JN for 2-D mapping,2005
2. Characterization of a 2-D laser scanner for outdoor wide range measurement;Journal of Physics: Conference Series,2015
3. An ultrasonic sensor for distance measurement in automotive applications;IEEE Sensors Journal,2001
4. Clark, R.R. and Yaskawa Electric Corporation (1994), Scanning rangefinder with range to frequency conversionUS Patent 5,309,212.
5. Some applications of laser rangefinder in mobile robotics;Journal of Control Engineering and Applied Informatics,2012
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献