Fabrication of cathode composite Co3O4/CC and study on electrochemical properties of zinc cobalt battery

Author:

Tan Wenhai,Zhang Yichen,Song Yuhao,Ma Yanbo,Zhao Chao,Zhang Youfeng

Abstract

Purpose Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported. Design/methodology/approach Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test. Findings The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles. Originality/value The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Publisher

Emerald

Reference45 articles.

1. Scientific challenges for the implementation of Zn-ion batteries;Joule,2020

2. Facile synthesis of porous ZnCo2O4 nanosheets and the superior electrochemical properties for sodium ion batteries;Nanomaterials,2018

3. Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization;Electrochimica Acta,2021

4. Novel direct growth of ZIF-67 derived Co3O4 and N-doped carbon composites on carbon cloth as supercapacitor electrodes;Journal of Colloid and Interface Science,2022

5. An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries;Journal of Materials Chemistry A,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3